Verifying time complexity of Turing machines

نویسنده

  • David Gajser
چکیده

We show that, for all reasonable functions T (n) = o(n log n), we can algorithmically verify whether a given one-tape Turing machine runs in time at most T (n). This is a tight bound on the order of growth for the function T because we prove that, for T (n) ≥ (n+1) and T (n) = Ω(n log n), there exists no algorithm that would verify whether a given one-tape Turing machine runs in time at most T (n). We give results also for the case of multi-tape Turing machines. We show that we can verify whether a given multi-tape Turing machine runs in time at most T (n) iff T (n0) < n0 + 1 for some n0 ∈ N. We prove a very general undecidability result stating that, for any class of functions F that contains arbitrary large constants, we cannot verify whether a given Turing machine runs in time T (n) for some T ∈ F . In particular, we cannot verify whether a Turing machine runs in constant, polynomial or exponential time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verifying whether One-Tape Turing Machines Run in Linear Time

We discuss the following family of problems, parameterized by integersC ≥ 2 andD ≥ 1: Does a given one-tape q-state Turing machine make at mostCn+D steps on all computations on all inputs of length n, for all n? Assuming a fixed tape and input alphabet, we show that these problems are co-NP-complete and we provide good lower bounds. Specifically, these problems can not be solved in o(q(C−1)/4) ...

متن کامل

1 9 M ay 2 01 4 Verifying Time Complexity of Deterministic Turing Machines ∗

We show that, for all reasonable functions T (n) = o(n log n), we can algorithmically verify whether a given one-tape Turing machine runs in time at most T (n). This is a tight bound on the order of growth for the function T because we prove that, for T (n) ≥ (n+1) and T (n) = Ω(n log n), there exists no algorithm that would verify whether a given one-tape Turing machine runs in time at most T ...

متن کامل

Some improvements in fuzzy turing machines

In this paper, we improve some previous definitions of fuzzy-type Turing machines to obtain degrees of accepting and rejecting in a computational manner. We apply a BFS-based search method and some level’s upper bounds to propose a computational process in calculating degrees of accepting and rejecting. Next, we introduce the class of Extended Fuzzy Turing Machines equipped with indeterminacy s...

متن کامل

Theory of One Tape Linear Time Turing Machines

A theory of one-tape (one-head) linear-time Turing machines is essentially different from its polynomial-time counterpart since these machines are closely related to finite state automata. This paper discusses structural-complexity issues of one-tape Turing machines of various types (deterministic, nondeterministic, reversible, alternating, probabilistic, counting, and quantum Turing machines) ...

متن کامل

ar X iv : c s / 03 10 04 6 v 2 [ cs . C C ] 1 4 Ju n 20 04 Theory of One Tape Linear Time Turing Machines ∗

A theory of one-tape linear-time Turing machines is quite different from its polynomial-time counterpart since one-tape linear-time Turing machines are closely related to finite state automata. This paper discusses structural-complexity issues of one-tape Turing machines of various types (deterministic, nondeterministic, reversible, alternating, probabilistic, counting, and quantum Turing machi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Informatica (Slovenia)

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2015